

IS Detection Kit Protocol

KIT CONTENTS

Quantities provided are sufficient for analysis of ten samples.

- Positive Control Genomic DNA: 170 µL
- Negative Control Genomic DNA: 170 µL
- IS-specific Forward and Reverse Primers: 80 μL at 5 μM, for each of the following IS elements:

IS1, IS2, IS3/ISEc17, IS4, IS5, IS10, IS30D, IS150, IS186, IS600/ISsd1, IS609, IS911, ISEc1/3/5, ISEc4, RhsA/B/C, and RhsD/E.

• Positive Control *dnaE* Forward and Reverse Primers: 60 μL of each at 5 μM

Store contents at -20°C. Do not store in a "frost-free" freezer.

PERFORMANCE

IS Detection primers sets are functionally tested using the Positive and Negative Control Genomic DNAs, following the procedure described in this User Protocol. Primers for *dnaE*, a gene present in all *E. coli* strains, serve as a positive control for the quality of the sample genomic DNA. The kit and reaction conditions have been validated with Phusion[™] High-Fidelity DNA Polymerase from New England Biolabs. Six microliters of the resulting PCR amplification products are analyzed on 1.0% agarose gel in TAE buffer. No products are visible when water is added in place of template DNA. Expected results are as follows:

	Primer Pair	Expected PCR		Primer Pair	Expected PCR
Lane	Tested	Product Size (bp)	Lane	Tested	Product Size (bp)
M = Markers			M = Markers		
1	IS1	433	1	IS1	None
2	IS2	712	2	IS2	None
3	IS3/ISEc17	987	3	IS3/ISEc17	None
4	IS4	982	4	IS4	None
5	IS5	424	5	IS5	None
6	IS10	630	6	IS10	None
7	IS30D	658	7	IS30D	None
8	IS150	696	8	IS150	None
9	IS186	862	9	IS186	None
10	IS600/ISsd1	744	10	IS600/ISsd1	None
11	IS609	966	11	IS609	None
12	IS911	307	12	IS911	None
13	ISEc1/3/5	318	13	ISEc1/3/5	None
14	ISEc4	239	14	ISEc4	None
15	RhsA/B/C	389	15	RhsA/B/C	None
16	RhsD/E	468	16	RhsD/E	None
17	dnaE	682	17	dnaE	682

PRE-TREATMENT OF PLASMID DNAS

Purified plasmid DNA may be contaminated with chromosomal DNA which could yield a positive PCR result even if the plasmid in question contains no IS elements. Therefore plasmid DNAs should be pretreated with a DNase that degrades linear but not circular DNA. Scarab uses EPICENTRE's Plasmid-Safe[™] ATP-Dependent DNase (Cat. #E3101K). Be sure to inactivate the DNAase according to the manufacturer's protocol before using the treated plasmid as a PCR template.

PRE-AMPLIFICATION STEPS

- 1. Thaw the provided primers and DNA samples for testing on ice
- 2. Label the required number of 0.2-mL tubes or map out a microplate
- 3. Dilute the DNA samples:
 - For genomic DNA, dilute to 1-10 ng/μL
 - For plasmid DNA, dilute to 0.3 0.5 fmoles/ μ L (1 ng/ μ L = 0.30817 fmoles/ μ L of a 5 kb plasmid)
- 4. Program the thermal cycler as follows:

Temperature	Time	Cycles
98°C	1 min	1
98°C	10 sec	
61°C	30 sec	30
72°C	1 min	
72°C	7 min	1
4°C	Hold	

PCR Procedure

5. For each reaction, mix 2 µL of each of the two primers, 1 µL of the sample DNA and 45 µL PCR master mix

The master mix will contain buffer, water, dNTPs and thermostable polymerase, per the polymerase manufacturer's recommendations

- 6. Overlay each reaction mix with 1 drop (~ 20μL) of nuclease-free mineral oil to prevent evaporation. (Mineral oil is not necessary if you are using a thermal cycler with a heated lid)
- 7. Transfer tubes to thermal cycler and proceed with the PCR.
- 8. To analyze the results, add 6 µL of each PCR product mix per well of a 1% agarose gel in TAE buffer and electrophorese at 105 V/cm in 1xTAE running buffer then visualize PCR products with your usual method

NOTES

- A complete analysis of a genomic DNA sample requires four reactions for each primer pair: No DNA control, negative control genomic DNA, positive control genomic DNA and sample of interest; and three reactions for the *dnaE* control: No DNA control, negative control genomic DNA, and positive control genomic DNA for a total of 71 reactions for all primer pairs.
- A complete analysis of plasmid DNA sample requires four reactions for each primer pair: No DNA control, negative control genomic DNA, positive control genomic DNA and sample of interest, but Rhs and dnaE controls are not needed, for a total of 14 primer pairs x 4 reactions each == 56 reactions.